An Exponential Separation between the Parity Principle andthe
نویسندگان
چکیده
The combinatorial parity principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a xed bi-partition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the parity principle requires exponential-size bounded-depth Frege proofs. Ajtai Ajt90] previously showed that the parity principle does not have polynomial-size bounded-depth Frege proofs even with the pigeonhole principle as an axiom schema. His proof utilizes nonstandard model theory and is nonconstructive. We improve Ajtai's lower bound from barely superpolynomial to exponential and eliminate the nonstandard model theory. Our lower bound is also related to the inherent complexity of particular search classes (see Pap91]). In particular, oracle separations between the complexity classes PPA and PPAD, and between PPA and PPP also follow from our techniques ((BP93]).
منابع مشابه
An Exponential Separation Between the Parity Principle and the Pigeonhole Principle
The combinatorial parity principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bipartition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the parity principle requires exponentialsize bounded-d...
متن کاملA counterexample for the global separation principle for discrete-time nonlinear systems
In the control systems literature, it is well known that a separation principle holds locally for nonlinear control systems, when exponential feedback stabilizers and exponential observers are used. In this paper, we present a counterexample to show that the global separation principle need not hold for nonlinear control systems. Our example demonstrates that global stability might be lost when...
متن کاملAn Exponential Separation between the Matching Principleand
The combinatorial matching principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a xed bi-partition of the vertices, there is no perfect matching between them. Therefore , it follows from recent lower bounds for the pigeonhole principle that the matching principle requires exponential-size boun...
متن کاملAn Exponential Separation between the Matching Principle and the Pigeonhole Principle
The combinatorial matching principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bipartition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the matching principle requires exponential-size boun...
متن کاملAn EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data
The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...
متن کامل