An Exponential Separation between the Parity Principle andthe

نویسندگان

  • Paul Beame
  • Toniann Pitassi
چکیده

The combinatorial parity principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a xed bi-partition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the parity principle requires exponential-size bounded-depth Frege proofs. Ajtai Ajt90] previously showed that the parity principle does not have polynomial-size bounded-depth Frege proofs even with the pigeonhole principle as an axiom schema. His proof utilizes nonstandard model theory and is nonconstructive. We improve Ajtai's lower bound from barely superpolynomial to exponential and eliminate the nonstandard model theory. Our lower bound is also related to the inherent complexity of particular search classes (see Pap91]). In particular, oracle separations between the complexity classes PPA and PPAD, and between PPA and PPP also follow from our techniques ((BP93]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exponential Separation Between the Parity Principle and the Pigeonhole Principle

The combinatorial parity principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bipartition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the parity principle requires exponentialsize bounded-d...

متن کامل

A counterexample for the global separation principle for discrete-time nonlinear systems

In the control systems literature, it is well known that a separation principle holds locally for nonlinear control systems, when exponential feedback stabilizers and exponential observers are used. In this paper, we present a counterexample to show that the global separation principle need not hold for nonlinear control systems. Our example demonstrates that global stability might be lost when...

متن کامل

An Exponential Separation between the Matching Principleand

The combinatorial matching principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a xed bi-partition of the vertices, there is no perfect matching between them. Therefore , it follows from recent lower bounds for the pigeonhole principle that the matching principle requires exponential-size boun...

متن کامل

An Exponential Separation between the Matching Principle and the Pigeonhole Principle

The combinatorial matching principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bipartition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the matching principle requires exponential-size boun...

متن کامل

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996